Degeneration of phrenic motor neurons induces long-term diaphragm deficits following mid-cervical spinal contusion in mice.

نویسندگان

  • Charles Nicaise
  • Rajarshi Putatunda
  • Tamara J Hala
  • Kathleen A Regan
  • David M Frank
  • Jean-Pierre Brion
  • Karelle Leroy
  • Roland Pochet
  • Megan C Wright
  • Angelo C Lepore
چکیده

A primary cause of morbidity and mortality following cervical spinal cord injury (SCI) is respiratory compromise, regardless of the level of trauma. In particular, SCI at mid-cervical regions targets degeneration of both descending bulbospinal respiratory axons and cell bodies of phrenic motor neurons, resulting in deficits in the function of the diaphragm, the primary muscle of inspiration. Contusion-type trauma to the cervical spinal cord is one of the most common forms of human SCI; however, few studies have evaluated mid-cervical contusion in animal models or characterized consequent histopathological and functional effects of degeneration of phrenic motor neuron-diaphragm circuitry. We have generated a mouse model of cervical contusion SCI that unilaterally targets both C4 and C5 levels, the location of the phrenic motor neuron pool, and have examined histological and functional outcomes for up to 6 weeks post-injury. We report that phrenic motor neuron loss in cervical spinal cord, phrenic nerve axonal degeneration, and denervation at diaphragm neuromuscular junctions (NMJ) resulted in compromised ipsilateral diaphragm function, as demonstrated by persistent reduction in diaphragm compound muscle action potential amplitudes following phrenic nerve stimulation and abnormalities in spontaneous diaphragm electromyography (EMG) recordings. This injury paradigm is reproducible, does not require ventilatory assistance, and provides proof-of-principle that generation of unilateral cervical contusion is a feasible strategy for modeling diaphragmatic/respiratory deficits in mice. This study and its accompanying analyses pave the way for using transgenic mouse technology to explore the function of specific genes in the pathophysiology of phrenic motor neuron degeneration and respiratory dysfunction following cervical SCI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of the astrocyte glutamate transporter GLT1 exacerbates phrenic motor neuron degeneration, diaphragm compromise, and forelimb motor dysfunction following cervical contusion spinal cord injury.

A major portion of spinal cord injury (SCI) cases affect midcervical levels, the location of the phrenic motor neuron (PhMN) pool that innervates the diaphragm. While initial trauma is uncontrollable, a valuable opportunity exists in the hours to days following SCI for preventing PhMN loss and consequent respiratory dysfunction that occurs during secondary degeneration. One of the primary cause...

متن کامل

Intraspinal cell transplantation for targeting cervical ventral horn in amyotrophic lateral sclerosis and traumatic spinal cord injury.

Respiratory compromise due to phrenic motor neuron loss is a debilitating consequence of a large proportion of human traumatic spinal cord injury (SCI) cases (1) and is the ultimate cause of death in patients with the motor neuron disorder, amyotrophic laterals sclerosis (ALS) (2). ALS is a devastating neurological disorder that is characterized by relatively rapid degeneration of upper and low...

متن کامل

Neurobiology of Disease Overexpression of the Astrocyte Glutamate Transporter GLT1 Exacerbates Phrenic Motor Neuron Degeneration, Diaphragm Compromise, and Forelimb Motor Dysfunction following Cervical Contusion Spinal Cord Injury

Ke Li,1* Charles Nicaise,1,2* Daniel Sannie,1 X Tamara J. Hala,1 Elham Javed,1 Jessica L. Parker,1 Rajarshi Putatunda,1 Kathleen A. Regan,1 Valérie Suain,3 Jean-Pierre Brion,3 Fred Rhoderick,4 Megan C. Wright,5 David J. Poulsen,4 and Angelo C. Lepore1 1Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University Medical College, Philadelphia, Pennsylvania 19107, 2...

متن کامل

Cervical dorsal rhizotomy increases brain-derived neurotrophic factor and neurotrophin-3 expression in the ventral spinal cord.

Although neurotrophic factors have been implicated in several forms of neuroplasticity, little is known concerning their potential role in spinal plasticity. Cervical dorsal rhizotomy (CDR) enhances serotonin terminal density near (spinal) phrenic motoneurons and serotonin-dependent long-term facilitation of phrenic motor output (Kinkead et al., 1998). We tested the hypothesis that selected neu...

متن کامل

Human iPS cell-derived astrocyte transplants preserve respiratory function after spinal cord injury.

Transplantation-based replacement of lost and/or dysfunctional astrocytes is a promising therapy for spinal cord injury (SCI) that has not been extensively explored, despite the integral roles played by astrocytes in the central nervous system (CNS). Induced pluripotent stem (iPS) cells are a clinically-relevant source of pluripotent cells that both avoid ethical issues of embryonic stem cells ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurotrauma

دوره 29 18  شماره 

صفحات  -

تاریخ انتشار 2012